Modern University

For Information and Technology

Department: Basic Since **Specialization:** Mech. &civil & Bio& Comm. and control Dep.

Academic year 2014/2015

Semester Spring
Exam Date 05/2015

Final Term Examination

Subject: Mathematic III Code: CENG 203, MENG208, ELTE201, CONT201, COM201

Examiner: Dr. Fathi Abdessalam Time Allowed: 2 hours

Number of Pages: 1 Number of Questions: 5 Attempt all Questions

Question 1, (8 Marks)

Find the first and the second partial derivative for $f(x,y) = (x^3 - y^2)^5$ (4 Marks)

(a) If
$$w = \ln(x^2 + y^2)$$
 Show that $x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} = 2$ (4 Marks)

Question 2, (8 Marks)

Solve the following differential equations

(a)
$$x\sqrt{1+y^2}dx + y\sqrt{1+x^2}dy = 0$$
 (4 Marks)

(b)
$$(xy - x^2)dy - y^2dx = 0$$
 (4 Marks)

Question 3, (8 Marks)

Find the general solution for the following differential equations

(a)
$$(D^2 - 3D + 2)y = e^{3x}$$
 (4 Marks)

(b)
$$(D^2 + D - 2)y = \sin x$$
 (4 Marks)

Question 4, (8 Marks)

(a) Find
$$\nabla \cdot \vec{F}$$
 and $\nabla \times \vec{F}$ given that $\vec{F} = (2x^2y + z^2)\vec{i} + x^2\vec{j} + 3x^2z^3\vec{k}$ (4 Marks)

(b) Find
$$\oint \overline{F} \cdot dr$$
 where $\overrightarrow{F} = (x - y)\overrightarrow{i} + (x + y)\overrightarrow{j}$

on the circle
$$x = 2\cos\theta$$
, $y = 2\sin\theta$ (4 Marks)

Question 5, (8 Marks)

(a) Evaluate
$$\int_C \frac{z^2 + 5}{z - 1} dz$$
 where C is the circle $z = 2e^{i\theta}$. (4 Marks)

(b) Use ratio test to test the series
$$\sum_{n=1}^{\infty} \frac{3n+2}{5^n}$$
 for convergence. (4 Marks)